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fringence as observed. This anisotropy could be due to the 
orientation of ester groups similar to the alignment of phenyl 
groups suggested to account for the positive photoelastic 
effect in polystyrene 1°. 

However, since the ester groups contribute much of the 
X-ray scattering from PMMA, changes in their orientation 
should have a quite visible effect on the scattering pattern 11. 
In fact, undeformed and elastically deformed specimens give 
very similar patterns in the higher-angle region that comes 
from scattering within the chains. 

Hence we conclude that the negative photoelasticity in 
PMMA is due to the 'local-field effect' but the theory needs 
to include the influence of correlation of segmental orienta- 
tion before it can predict the observed values precisely. 

Stein and Hong 12 have incorporated a similar modification 
into the theory of the stress optical coefficient of rubbers. 

Further support for the local-field theory comes from 
LeGrand's findings x3 (which we have confirmed) that the 
strain optical coefficient of PMMA is almost independent 
of temperature over the range 20-70°C. The theory pre- 
dicts that the birefringence at constant elastic strain should 
decrease slowly with increasing temperature, due to the 
lowering of refractive index caused by thermal expansion. 

In the elastic strain region, the local-field effect does, of 
course, give a negative component of birefringence for all 
materials. For polymers, this term will only dominate for 
materials such as glassy PMMA where orientation of units 

with highly anisotropic polarizibility does not occur during 
elastic deformation. 

A cknowledgemen ts 

We acknowledge support and interest from 
Dr. A. H. Windle during the course of this work, and also 
useful discussions with Dr. H. de Vries and 
Dr. R. A. Duckett. Financial support was provided by the 
Science Research Council. 

References 
1 Shishkin, N. I. and Milagin, M. F. Soviet Physics Solid State 

1963, 4, 1967 
2 Raha, S. and Bowden, P. B. Polymer 1972, 13, 175 
3 Kahar, N., Duckett, R. A. and Ward, I. M. Polymer 1978, 19, 

136 
4 Pick, M., Lovell, R. and Windle, A. H. to be published 
5 Pick, M., Lovell, R. and Windle, A. H. to be published 
6 Bleaney, B. I. and Bleaney, B. 'Electricity and Magnetism', 

3rd edition, Oxford Univ. Press, Oxford, 1976, p 299 
7 Dunmur, D. A. Mol. Phys. 1972, 23, 109 
8 Havelock, T. H. Proc. R. Soc., London 1908, A80, 28 
9 Stoner, E. C. Phil. Mag. 1945, 36,803 

10 Rudd, J. F. and Gurnee, E. F. J. Appl. Phys. 1957, 28, 1096 
11 Lovell, R. and Windle, A. H. to be published 
12 Stein, R. S. and Hong, S. D. J. Macromol. Sci. -Phys. 1976, B12, 

125 
13 Le Grand, D. G. J. Polym. Scg (A-2), 931 

Graph-like state of matter: 13. A caution on critical exponents 
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(Received 23 July 1979) 

There are two main different approaches to the modelling 
of the free energy AG of mixing a polymer solution: (a) the 
classical mean field approximation theories (for a review see 
Koningsveld 1) and (b) the modern theories 2 based on con- 
tinuum approximations to the singularities featured in the 
lattice-graph models of the Ising-type. 

The latter (especially renormalisation group and SCF) 
theories seek to relate the subtleties of critical phenomena 
to analytic singularities of asymptotic continuum models, 
through critical exponents. According to scaling arguments, 
these exponents are interrelated by a hypothesis of univer- 
sality a which should embrace phase equilibria in polymer 
solutions. The 'phenomenological' mean-field theories are 
content to operate within the framework of Gibbs, Maxwell 
and van der Waals now recognised as the essential lowest 
level of description. At this level the AG function extends 
through the metastable domain to spinodal loci. No analy- 
tical singularity is postulated at spinodal or even specifically 
at critical points, and accordingly suitable Taylor series are 
available if necessary. 

Thus consider the following generalisation of the (mean- 
field) Flory-Huggins theory for a monodisperse solution in 
the usual notation (with q~o = 1 - q5 = volume fraction of 
solvent): 

0032--3861/79/121450--04502.00 
© 1979 IPC Business Press 

1450 POLYMER, 1979, Vol 20, December 

AG_ ~olnqbo + qbm_llna p + qboq~ (130 + [31/T ) ; m =M/c 
R T  (1 - 7 ~ )  

(1) 

It has the advantage that all parameters (/30,/31,7, c = 
117.76) have a molecular interpretation 4. The derived analy- 
tical spinodal curves (T = T(qs) for J= a(AG/RT)/Orb = 0), fit 
extensive data on polystyrene/cyclohexane (PS/CH) only 
moderately. The data include 70 spinodal points for 11 PS 
samples in the range of molecular weight 5.1 x 104 ~<M~< 
2.6 x 106, with the standard deviation o = 4.7 x 10 -3 of J 
from zero. For the historic theory (7 = 0) the misfit is 
severe (o = 2.2 x 10-2), and attributed to the location of the 
critical and measurable spinodal points in the region of con- 
centration ~* -~ X -1. In this region, the coils of volume 
X0 m3/2 = Xrn ()t o ~ 0.57 for s PS/CH and m is the chain 
length taking solvent = 1), if prevented from overlapping, 
would just fall the solution volume. Flory 6 warned that the 
Flory-Huggins theory would break down there because 
the segment density becomes non-uniform (statistically 
heterogeneous). Accordingly, Koningsveld et al.S in their 
'bridging theory' tried to span this concentration range by 
modelling the solution roughly as a pseudo two-phase 



system, with different partition functions assigned to the 
dilute and concentrated phases. Poisson statistics were used 
to estimate the concentration of segments in non-overlapping 
domains. We simplify this treatment by using the same 
Poisson statistics to estimate the fraction of non-overlapping 
chains. 

The reason is that we now have a conformational parti- 
tion Z(T) function for such an isolated chaina: 

Z(T) /Z(To)  = z(z - 1) m-  2exp(-m~ + const, mlnm~ 2) 

(2) 

z being the co-ordination number of the lattice graph. Here 
is the contact potential divided by RT, satisfactorily cali- 

brated 8 by light scattering experiments of the expansion 
ratio at various T. This models a freely self-intersecting 
random-walk chain. The same equation, within the present 
approximation (~2 ~ 0), is approached by the F lory-  
Huggins model as ¢ ~ 0: 

Z (T)/Z (To) = z (z - 1 )m - 2 exp(-m .const .(½ - X 1 )) (3) 

In the absence of scattering data for T < To, we merely 
equate ~ to const. (1/2 - Xl), the contact potential ascribed 
by the Flory-Huggins theory. By virtue of the equivalence 
of equations (2) and (3), the only correction now required 
for statistical inhomogeneity in our Flory-Huggins-based 
model, which implements the two-phase approximation, is 
in the translational part of the partition function Zdi l 
of the fraction, P say, of isolated chains. We imagine the centre 
of an isolated chain to be constrained within a 'box' of 
volume equal to that of the coil. The Zdi I is reduced by a 
factor e per chain. (The reasoning resumbles that for the 
communal entropy factor e in classical cell theories 9 for the 
liquid state, as we will explain elsewhere). This greatly sim- 
plified bridging theory improves the fit of the above 70 
spinodal points to o = 6.4 x 10 -4. If the factor e is replaced 
by a floating parameter K, optimisation yields K = (e) 0'96 
with the negligible improvement o = 6.35 × 10 -4 to the fit, 
which supports the validity of the approach. So does the 
fact that, for this improved bridging theory, the 40-year-old 
second nearest neighbour correction of Huggins, dealing 
with longer-range correlations in the segment distribution, 
becomes very worthwhile for the first time, reducing o fur- 
ther to 4.0 x 10 -4. 

Accordingly, the additional terms added to AG/RT in (1) 
are (a) for the translational correction. 

¢00m - 1 p =  O00m-lexp(_Xom 1/2(:1) ) (4) 

where X0 ~ 0.57 for PS/CH; and (b) for the Huggins correc- 
tion m, one finds 

1 {(1 3 , ) , l n ( 1 - T O ) - ( 1 - T 0 ) l n ( 1 - - r 0 ) )  (5) 
Y 

The resulting spinodal curve is obtained in closed form, 
analytic in • (for 0 < 3' < 1): 

/ ( (1 -- 7(:1)) 3 [o f f l  + m_lp(OoOX2 T=/31/  / 2~'C-~ [ +(Om)- I  

- 2 - 2 X  ( 1 - 2 0 ) )  ( 1 - ' ) ' ~ )  
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It is fitted to typical light scattering and (thermally stepped) 
PICS measurements in Figure 1 for molecular weights bet- 
ween 5.1 x 104 and 2.61 x 106. 

Parallel displacements of the calculated curves shown, 
which move their maxima slightly towards the O-point (To 
= 306.2°K, • = 0), to optimize the fit further, are admissible 
because of the uncertainties in the molecular weight calibra- 
tions. The fits of almost all points shown are then better 
than 0.2K over the 18 ° range covered. As will be shown 
elsewhere, polydispersity effects, including the observed 
pattern of mutual intersection ~ of pairs of spinodal curves 
for samples of identical M w but differing in Mz, are well 
modelled by the present bridging theory with appropriate 
minor generalization. 

Discussion 
Since from thermodynamics (~ T/~O) = 0 for the spinodal 

locus at the critical point, we have its Taylor expansion: 

T c -  T 

Vc 
- a2(O - OC)2 +a3(O - OC) 3 . . . (7) 

or inverting 

1 [ T c - T I 1 / 2  a 3 [ T c - T i l / 3  

6~--=(I)-(PC-a21/2 ~ - - ~ C  ] 2a2 ~, rc  ] 

(e/a2)l/2 - a 3 e/2a2 . . .  (8) 

Thus if 80  ~ e¢, the critical exponent 13 = 1/2 for any spino- 
dal function analytic at T c (which is well known). 

We compare the spinodal locus forM = 1.56 x 106 (plot 
B) or 2.5 x 106 (plot A) with binodal measurements of 
Nakata et aL z° (plot N). Binodals are easier to measure but 
hard to compute from a free energy function such as equa- 
tions 1,4 and 5 in the vincity of the critical point. In mean 
field theory, the binodal should asymptotically approach 
the corresponding spinodal curve at minus infinity. This 
prediction is plausibly supported by Figure 2. It is not safe 
to seek any counter-indication in the pattern of the last few 
points at X. 

The line A' (Figure 2) displays the true limiting slope t3 = 
1/2, which the theory approaches closely only in the region 
e < 10 -7 or so and, therefore, probably inaccessible even in 
principle because fluctuation effects intervene al seriously 
for samples of the size used. The basic mean-field theory 
allows the spinodal to return, at Y, close to the course of 
the asymptotic regression line A' (13 = 1/2). In the inter- 
mediate range 10 -7 < e < 10 -2, the correction for statistical 
inhomogeneity is effective in displacing the spinodal locus 
from the line A'. 

The important implication of Figure 2 is this: over the 
two-decade range viz. 7 x 10 -5 < e < 5 x 10 -3 of the 
spinodal data (Figure 1) which furnished the optimized 
parameters for equation 4, this equation simulates, well 
within experimental error, the straight line A". This line 
represents a fixed, non-limiting exponent, which agrees for- 
tuitously closely with the limiting exponent (/3 = 5/16 = 
0.313) for approach to the critical point of the 3-dimensional 
Ising model s. An analytic function can, of course, generate 
a non-limiting exponent over a finite range, constant to 
within arbitrarily small (but not zero) tolerance. The 
theoretical model furnishes such a function, which we are 
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Figure 1 Curves from equation 6 (optimized parameters:/30 = 0.1717, ~1 = 100.53, 3' = 0.4651, X 0 = 0.6215) f itted to experimental spinodal 
points on nominally monodisperse PS/CH solutions (cf. reference 7) of varying molecular weights: (a) 5.1 x 104; (b) 1.2 x 105; (c) 5.0 x loS; 
(d) 2.61 x 106 
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Figure 2 Isothermal differences ( I ) + - 4 ) -  on spinodal locus (circles), 
calculated from equation 6 (for parameter values see Figure 1) in 
comparison with the measured binodal (coexistence) points on 
PS/CH by Nekata etal.  20 (squares). Plot A:  Molecular weight = 
2.5 x 106 which gives (equation 6) T c = 30 .50°C,  as stated by these 
authors• Plot B: Molecular weight = 1•56 x 106 as stated by these 
authors, which gives T c about 29.81°C.  A':  asymptotic regression 
line (# = 0.5);  A'  linear part (regression line between arrow limits) 
simulating Ising-type exponent (# = 0 .313)  in experimental range 
near Tc; plot B is displaced one decade upwards 

unable to contrive artificially! The shape of plot A implies 
significant contributions in the experimental range of at 
least two positive and two negative Taylor coefficients. Such 
contributions would require a rationalization of the pattern 
of convergence from the complex plane onto the positive 
and negative real axes of several roots of the partition func- 

tion in the asymptotic continuum analysis of the I. The con- 
ventional plot of (~+ - ~ - )  against (e), Figure 3, is very 
insensitive, since it compresses the non-limiting character of 
the correction for heterogeneity into the tiny intercept 
shown. A small but significant intercept is seen in a plot by 
Weinberger and Schneider n for the critical behaviour of 
Xenon. 

In summary, we suggest: 
(a) the quantitative comparison of experimental data with 
mathematical models is the business of statistics. No statis- 
tical tests are possible, on the basis of experiment, for the 
hypothesis that a function is analytic at a point. The 
suitability of models cannot, therefore, be decided on the 
criterion of analyticity; 
(b) the singularities in Ising-type lattice models concern dif- 
ferent physical situations (e.g. magnetic transitions in 
localized systems) from our mean-field theory which models 
statistical heterogeneity induced by diffusional mobility. 
The heterogeneity correction is at its maximum in a region 
not including the critical point (Figure 2). As a result, 
values of limiting exponents of the Ising model may be simu- 
lated, by the mean field theory, when roughly corrected for 
heterogeneity, throughout the experimental region; 
(c) the general consistency of mean-field theories for 
mobile polymer systems is reinforced by other observations. 
In determining spinodals by Debye fluctuation scattering 
extending into the metastable region, the relevant Debye-  
Scholte 13 plots are found to be linear, reflecting the accu- 
racy of the mean-field exponent unity, in preference to the 
non-classical 14 5/4, over the experimental range 7. For the 
liquid-gel transition at a gel point, Ising models seriously 
overestimate the intensity of ring-chain competition, as 
deduced both theoretically and experimentally is. As a result, 
classical exponents will prevail .6. 

The classical theories of gelation of Flory ~7 and 
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Figure 3 Conventional test for 1/3 power law applied to theoretical 
spinodal, equation 6. For molecular weight, see plot A, Figure 2. 
Note =-nail but finite intercept due to deviation from pseudo-linear 
course in the range T c +- 0.03°C 

Stockmayer  ~a represent a simpler graph-theoretical model 
than the Ising one: percolation on a tree rather than on a 
lattice graph. Only a tree-like model  survives when we can 
average by integrating out, as happens generally in the graph- 
like state of  matter ,  the random motions  in all but  one 
dimension19; and this is conducive to gratifying simplifica- 
tions, without  disturbing the beauty of  the mathematical  
analysis of  the Ising problem. Perhaps the only safe hypo- 
thesis of  universality is that,  without  exception, each case 
must be examined on its merits. 
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